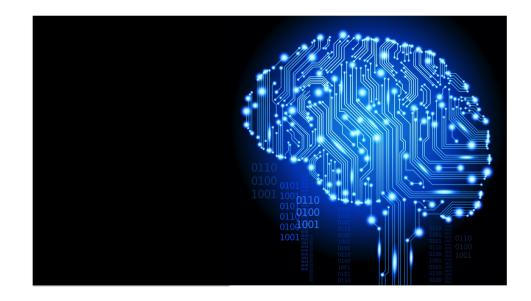
KCC 2017 Tutorial:

Convex Optimization for Decentralized Machine Learning



Sunghee Yun Software R&D Center Samsung Electronics

About the speaker

- Sunghee Yun
 - B.S., Electrical Engineering @ Seoul National University
 - M.S., Electrical Engineering @ Stanford University
 - Ph.D., Electrical Engineering @ Stanford University
 - CAE Team @ Semiconductor R&D Center
 - Design Technology Team @ DRAM Development Lab.
 - Memory Sales & Marketing Team @ Memory Business Unit
 - (currently) Software R&D Center
- Specialties
 - convex optimization
 - decentralized deep learning

Today

- Convex Optimization for Machine Learning
- Alternating direction method of multipliers (ADMM)
- Four perspectives for Machine Learning
 - statistical perspective
 - computer scientific perspective
 - numerical algorithmic perspective
 - performance improvement via hardware parallelism
- AI Applications

Prerequisite for the talk

This talk will assume the audience

- has been exposed to basic linear algebra
- can distinguish between componentwise inequality and that for positive semidefiniteness, *i.e.*,

$$Ax \preceq b \Leftrightarrow \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix} x \preceq \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \Leftrightarrow a_i^T x \leq b_i \text{ for } i = 1, \dots, m,$$

but,

$$A \succeq 0 \Leftrightarrow A = A^T$$
 and $x^T A x \ge 0$ for all $x \in \mathbf{R}^n$
 $A \succ 0 \Leftrightarrow A = A^T$ and $x^T A x > 0$ for all nonzero $x \in \mathbf{R}^n$

Alternating Direction Method of Multipliers (ADMM)

• reference: Distributed optimization and statistical learning via the alternating direction method of multipliers (by S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein)

What is ADMM for?

- ADMM is for
 - machine learning (or statistical learning) with huge data sets
 - decentralized optimization where
 - * agents (or devices in IoT environment) coordinate to solve large problem by iteratively solving small problems and being coordinated by central agent

Dual ascent method

• consider convex equality-constrained optimization problem:

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$

- Lagrangian defined by $L(x, y) = f(x) + y^T (Ax b)$
- dual function defined by

$$g(y) = \inf_{x} L(x, y) = -\sup_{x} ((-A^{T}y)^{T}x - f(x)) - b^{T}y = -f^{*}(-A^{T}y) - b^{T}y$$

• dual probem defined by

maximize
$$g(y)$$

Dual ascent method

• gradient method for dual problem:

$$y^{k+1} = y^k + \alpha^k \nabla g(y^k)$$

where $\nabla g(y) = A\tilde{x} - b$ with $\tilde{x} = \operatorname{argmin}_{x} L(x, y)$

• this fact induces the following *dual ascent method*:

$$x^{k+1}$$
 := $\operatorname*{argmin}_{x} L(x, y^k)$
 y^{k+1} := $y^k + \alpha^k (Ax^{k+1} - b)$

- consists of two stes; x-minimization and dual update

Dual decomposition

• suppose that f is separable in x_1, \ldots, x_N , *i.e.*,

$$f(x) = f_1(x_1) + \cdots + f_N(x_N)$$

where $x = \left[\begin{array}{ccc} x_1 & \cdots & x_N \end{array}
ight]^T$

• then, L is separable, too, since

$$L(x,y) = \sum_{i=1}^{N} f_i(x_i) + y^T \left(\sum_{i=1}^{N} A_i x_i - b\right) = \sum_{i=1}^{N} (f_i(x_i) + y^T A_i x_i) - b^T y$$

• thus, x-minimization step splits into N separate minimizations:

$$x_i^{k+1} = \operatorname*{argmin}_{x_i} L_i(x_i, y^k) = \operatorname*{argmin}_{x_i} (f_i(x_i) + y^T A_i x_i)$$

• parallelism can be employed!

Method of multipliers

- dual ascent fails, e.g., when f is an affine function in x!
- one solution: *augmented Lagrangian*

$$L_{\rho}(x,y) = f(x) + y^{T}(Ax - b) + (\rho/2) ||Ax - b||_{2}^{2}$$

• method of multipliers:

$$egin{array}{rcl} x^{k+1} & := & rgmin_x L_
ho(x,y^k) \ y^{k+1} & := & y^k +
ho(Ax^{k+1}-b) \end{array}$$

Optimality condition

- optimality conditions: $Ax^* b = 0$, $\nabla f(x^*) + A^Ty^* = 0$
- x^{k+1} minimizes $L_{
 ho}(x,y^k)$, hence

$$0 = \nabla_x L_{\rho}(x^{k+1}, y^k) = \nabla_x f(x^{k+1}) + A^T(y^k + \rho(Ax^{k+1} - b)) = \nabla_x f(x^{k+1}) + A^T y^{k+1}$$

- thus, *dual feasibility* achieved!
- primal feasibility achieved in limit: $\lim_{k\to\infty} Ax^{k+1} = b$

Pros and cons of method of multipliers

• pros: it works even for nondifferentiable or affine f possibly with $+\infty$ value

• cons: the penalty term deprives it of its capability of parallelism!

Alternating direction method of multipliers (ADMM)

- ADMM (proposed by Gabay, Mercier, Glowinski, Marrocco in 1976)
 - retains the robustness of method of multipliers
 - \ast can deal with nondifferentiable f
 - $\ast \,$ can deal with affine f
 - $\ast~$ can deal with f with $+\infty$ value
 - supports decomposition, hence parallelism
- dubbed "robust dual decomposition" or "decomposable method of multipliers"

ADMM

• ADMM formulation:

 $\begin{array}{ll} \mbox{minimize} & f(x) + g(z) \\ \mbox{subject to} & Ax + Bz = c \end{array}$

where f and g convex

• then, the augmented Lagrangian defined by

$$L_{\rho}(x, z, y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + (\rho/2) \|Ax + Bz - c\|_{2}^{2}$$

• finally, ADMM steps:

$$\begin{array}{ll} x\text{-minimization:} & x^{k+1} := \operatorname{argmin}_x L_\rho(x, z^k, y^k) \\ z\text{-minimization:} & z^{k+1} := \operatorname{argmin}_z L_\rho(x^{k+1}, z, y^k) \\ \text{dual update:} & y^{k+1} := y^k + \rho(Ax^{k+1} + Bz^{k+1} - c) \end{array}$$

Optimality conditions

• optimality conditions

primal feasibility:
$$Ax + Bz - c = 0$$

dual feasibility: $\nabla f(x) + A^T y = 0, \ \nabla g(z) + B^T y = 0$

$$ullet$$
 since z^{k+1} minimizes $L_
ho(x^{k+1},z,y^k)$,

$$\begin{array}{rcl} 0 & = & \nabla g(z^{k+1}) + B^T y^k + \rho B^T (A x^{k+1} + B z^{k+1} - c) \\ & = & \nabla g(z^{k+1}) + B^T (y^k + \rho (A x^{k+1} + B z^{k+1} - c)) \\ & = & \nabla g(z^{k+1}) + B^T y^{k+1} \end{array}$$

– thus, $(x^{k+1}, z^{k+1}, y^{k+1})$ satisfies the second dual feasibility condition!

- primal feasibility and the first dual feasibility are achieved as $k \to \infty$

ADMM in scaled form

• rewrite augmented Lagrangian with r = Ax + Bz - c and $u = (1/\rho)y$:

$$L_{\rho}(x, z, y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + (\rho/2) ||Ax + Bz - c||_{2}^{2}$$

$$= f(x) + g(z) + (\rho/2)(||r||_{2}^{2} + (2/\rho)y^{T}r)$$

$$= f(x) + g(z) + (\rho/2)(||r + (1/\rho)y||_{2}^{2} - ||(1/\rho)y||_{2}^{2})$$

$$= f(x) + g(z) + (\rho/2) ||Ax + Bz - c + u||_{2}^{2} - (\rho/2) ||u||_{2}^{2}$$

- ADMM in scaled form: (with $u^k := (1/
 ho)y^k$)
 - $\begin{array}{ll} x\text{-minimization:} & x^{k+1} := \mathrm{argmin}_x(f(x) + (\rho/2) \|Ax + Bz^k c + u^k\|_2^2) \\ z\text{-minimization:} & z^{k+1} := \mathrm{argmin}_z(g(z) + (\rho/2) \|Ax^{k+1} + Bz c + u^k\|_2^2) \\ \mathrm{dual\ update:} & u^{k+1} := u^k + (Ax^{k+1} + Bz^{k+1} c) \end{array}$
- Note that $u^k = u^0 + \sum_{i=1}^k r^i$ with $r^k = Ax^k + Bz^k c$

Convergence

• assuming that

- f and g are convex, closed, proper, *i.e.*,

$$\{(x,t) \in \mathbf{R}^n \times \mathbf{R} \mid f(x) \le t\}, \ \{(z,t) \in \mathbf{R}^n \times \mathbf{R} \mid g(x) \le t\}$$

are closed, nonempty, convex sets

- L_0 has a saddle point, *i.e.*, existence of (x^*, z^*, y^*) such that

$$L_0(x^*,z^*,y) \leq L_0(x^*,z^*,y^*) \leq L_0(x,z,y^*)$$

holds for all x, z, y

- ADMM converges:
 - iterates approach feasibility: $Ax^k + Bz^k c \rightarrow 0$
 - objective approaches optimal value: $f(x^k) + g(z^k) \rightarrow p^*$

Related algorithms

- Douglas, Peaceman, Rachford, Lions, Mercier: operator spliting methods (1950s, 1979)
- Rockafellar: proximal point algorithm (1976)
- Dykstra's alternating projections algorithm (1983)
- Spingarn's method of partial inverses (1985)
- Rockafellar-Wets progressive hedging (1991)
- Rockafellar, et al.: proximal methods (1976–Present)
- Bregman iterative methods (2008–Present)

Common patterns

• *x*-update step requires minimizing

$$f(x) + (\rho/2) ||Ax + v^k||_2^2$$

where $v^k = Bz^k - c + u^k$

• *z*-update step requires minimizing

$$g(z) + (\rho/2) \|Bz + w^k\|_2^2$$

where $w^k = Ax^{k+1} - c + u^k$

• a few special cases enable the simplification of these updates (by exploting special structures)

Decomposition

• suppose

- f is block-separable:

$$f(x) = f_1(x_1) + \cdots + f_N(x_N)$$

- A comformably block separable, *i.e.*, $A^T A$ is block diagonal

$$A^{T}A = \begin{bmatrix} A_{1}^{T} \\ \vdots \\ A_{N}^{T} \end{bmatrix} \begin{bmatrix} A_{1} & \cdots & A_{N} \end{bmatrix} = \begin{bmatrix} A_{1}^{T}A_{1} & 0 & \cdots & 0 \\ 0 & A_{2}^{T}A_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{N}^{T}A_{N} \end{bmatrix}$$

- then, x-update splits into N parallel updates of x_i
- the very same thing can be applied to z-udpate

What is proximal operator?

• when A = I, x-update becomes

$$x^{+} = \underset{x}{\operatorname{argmin}} \left(f(x) + (\rho/2) \|x - v\|_{2}^{2} \right) = \underset{f,\rho}{\operatorname{prox}}(v)$$

• furthermore,

- if $f = I_C$, *i.e.*, f is indicator function of $C \subseteq \mathbf{R}^n$, then

$$x^+ := \Pi_C(v),$$

i.e., projection onto C. - if $f = \lambda \| \cdot \|_1$, *i.e.*, f is l_1 norm, then

$$x_i^+ := S_{\lambda/\rho}(v_i),$$

i.e., soft thresholding where $S_a(v) = (v - a)_+ - (-v - a)_+$

What if the objective is quadratic?

- assume $f(x) = (1/2)x^T P x + q^T x + r$
- $\bullet\,$ then, x-update becomes

$$x^{+} = \operatorname{argmin}_{x} \left((1/2)x^{T}Px + q^{T}x + r + (\rho/2) \|Ax - v\|_{2}^{2} \right)$$
$$= (P + \rho A^{T}A)^{-1} (\rho A^{T}v - q)$$

• matrix inversion lemma implies

$$(P + \rho A^{T} A)^{-1} = P^{-1} - \rho P^{-1} A^{T} (I + \rho A P^{-1} A^{T})^{-1} A P^{-1}$$

• if direct method is used, cache factorization of $P + \rho A^T A$ or $I_+ \rho A P^{-1} A^T$ cen save tremendous of computation efforts

Solutions for general objective functions

- if f is smooth,
- standard methods can be used:
 - Newton's method, gradient method, quasi-Newton's method
 - preconditioned CG, limited-memory BFGS (scale to very large problems)
- other techniques:
 - warm start
 - early stopping with variant (or adaptive) tolerances as algorithm proceeds

• generic constrained optimization:

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathcal{C} \end{array}$

• ADMM form:

 $\begin{array}{ll} \text{minimize} & f(x) + g(z) \\ \text{subject to} & x - z = 0 \end{array}$

where $g(z) = I_{\mathcal{C}}(z)$

• then, ADMM iterations become:

$$\begin{aligned} x^{k+1} &:= & \operatorname{argmin}_{x} \left(f(x) + (\rho/2) \left\| x - z^{k} + u^{k} \right\|_{2}^{2} \right) \\ z^{k+1} &:= & \Pi_{\mathcal{C}} \left(x^{k+1} + u^{k} \right) \\ u^{k+1} &:= & u^{k} + x^{k+1} - z^{k+1} \end{aligned}$$

Lasso formulation

• problem formulation:

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||x||_1$$

• ADMM form:

minimize
$$(1/2) \|Ax - b\|_2^2 + \lambda \|z\|_1$$

subject to $x - z = 0$

• ADMM iterations:

$$egin{array}{rcl} x^{k+1} &:= & \left(A^TA +
ho I
ight)^{-1} \left(A^Tb +
ho z^k - y^k
ight) \ z^{k+1} &:= & S_{\lambda/
ho} \left(x^{k+1} + y^k/
ho) \ y^{k+1} &:= & y^k +
ho \left(x^{k+1} - z^{k+1}
ight) \end{array}$$

- for dense $A \in \mathbb{R}^{1500 \times 5000}$, *i.e.*, 5000 predictors and 1500 measurements
- computation efforts:
 - 1.32 seconds for factorization
 - $\,0.03$ seconds for ADMM iterations
 - 2.97 seconds for lasso solve
 - 4.45 seconds for full regularization path, $\mathit{e.g.},~30~\lambda s$
- only takes short sciprt

Sparse inverse covariance selection (SICS)

• S: empirical covariance of samples from $\mathcal{N}(0, \Sigma)$, with Σ^{-1} sparse, e.g., Gaussian Markov random field

• estimate Σ^{-1} via l_1 regularized maximum likelihood:

minimize $\operatorname{Tr}(SX) - \log \det X + \lambda \|X\|_1$

• methods: COVSEL (Banerjee et al 2008) or graphical lasso (Friedman, Hastie, and Tibshirani, 2007)

• SICS problem:

minimize
$$\operatorname{Tr}(SX) - \log \det X + \lambda \|X\|_1$$

• ADMM form:

minimize
$$\operatorname{Tr}(SX) - \log \det X + \lambda \|Z\|_1$$

subject to $X - Z = 0$

• ADMM iterations:

$$\begin{array}{rcl}
X^{k+1} &:= & \operatorname{argmin}_{X} \left(\operatorname{Tr}(SX) - \log \det X + (\rho/2) \| X - Z^{k} + U^{k} \|_{F}^{2} \right) \\
Z^{k+1} &:= & S_{\lambda/\rho} \left(X^{k+1} + U^{k} \right) \\
U^{k+1} &:= & U^{k} + (X^{k+1} - Z^{k+1})
\end{array}$$

Solution for *X***-update**

• eigenvalue decomposition:

$$\rho(Z^k - U^k) - S = Q\Lambda Q^T$$

• diagonal matrix forming:

$$\tilde{X}_{ii} = \frac{\lambda_i + \sqrt{\lambda_i^2 + 4\rho}}{2\rho}$$

• then, X-udpate can be achieved by

$$X^{k+1} = Q\tilde{X}Q^T$$

SICS example

- for $\Sigma^{-1} \in \mathbf{R}^{1000 \times 10000}$ with 10000 nonzero entries
- ADMM takes 3–10 minutes
- for comparision,
 - COVSEL takes >25 minutes when Σ^{-1} is 400×400 tridiagonal matrix

Consensus optimization (CO)

• sum of N functions as objective

minimize
$$\sum_{i=1}^N f_i(x)$$

- for example, f_i could be the loss function of *i*th training data block

• ADMM form:

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$

subject to $x_i - z = 0$

- x_i is *i*th local variable
- -z is the global variable
- $x_i z = 0$ are consistency or consensus constraints
- regularization can be added via g(z)

CO using ADMM

• Lagrangian:

$$L_{\rho}(x, z, y) = \sum_{i=1}^{N} \left(f_i(x_i) + y_i^T(x_i - z) + (\rho/2) \|x_i - z\|_2^2 \right)$$

• ADMM iterations:

$$\begin{aligned} x_i^{k+1} &:= & \operatorname*{argmin}_{x_i} \left(f_i(x_i) + y_i^{k^T}(x_i - z) + (\rho/2) \|x_i - z\|_2^2 \right) \\ z_i^{k+1} &:= & \frac{1}{N} \sum_{i=1}^N \left(x_i^{k+1} + (1/\rho) y_i^k \right) \\ y_i^{k+1} &:= & y_i^k + \rho(x_i^{k+1} - z^{k+1}) \end{aligned}$$

Consensus classification

- given data set, (a_i, b_i) , i = 1, ..., N where $a_i \in \mathbf{R}^n$, $b_i \in \{-1, 1\}$
- linear classifier $sign(a^Tw + v)$ with (vector) weight or support vector w, offset v
- margin for *i*th data is $b_i(a_i^T w + v)$
- loss for *i*th data is $l(b_i(a_i^T w + v))$ where *l* is loss function, *e.g.*, hinge, logistic, probit, exponential, *etc*.
- choose w, v so as to minimize

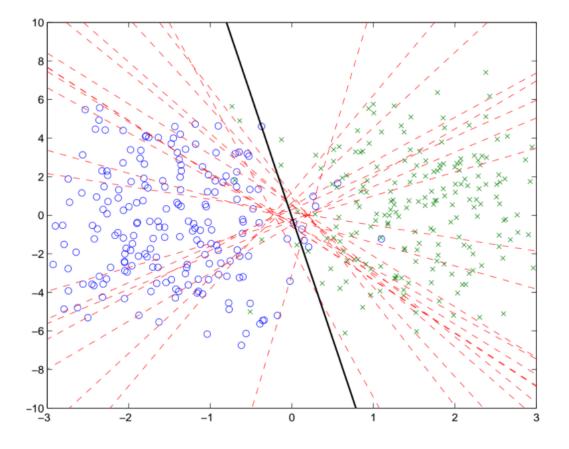
$$\frac{1}{N} \sum_{i=1}^{N} l(b_i(a_i^T w + v)) + r(w)$$

- r(w) is regularization term, e.g., l_2 , l_1 , l_p , etc.
- split data and use ADMM consensus to solve the optimization problem

Consensus SVM example

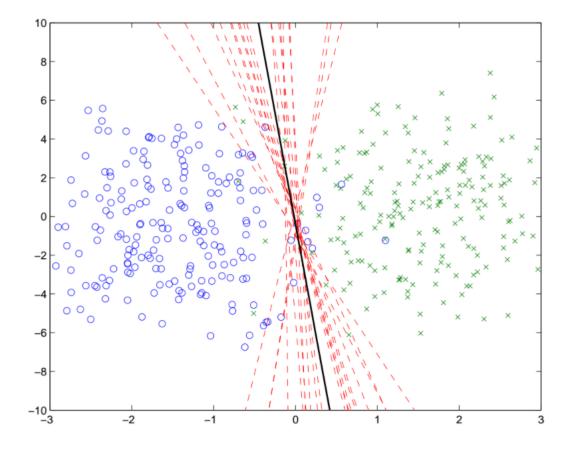
- hinge loss $l(u) = (l u)_+$ with l_2 regularization
- toy problem with n = 2, N = 400 to illustrate
- data split into 20 groups, in worst possible way: each group contains only positive or negative data

The 1st Epoch



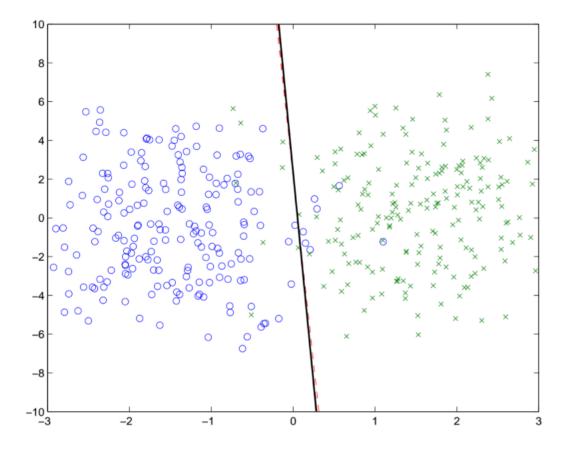
Convex Optimization for Decentralized Machine Learning @ KCC 2017

The 5th Epoch



Convex Optimization for Decentralized Machine Learning @ KCC 2017

The 40th Epoch



Distributed lasso

- example with dense $A \in \mathbf{R}^{m \times n}$ where m = 400,000 and n = 8,000
 - distributed solver written in C using MPI and GSL
 - no optimization or tuned libraries (like ATLAS, MKL)
 - split into 80 subsystems across 10 (8-core) machines
- computation efforts:
 - 30 seconds for loading data
 - $\,5$ seconds for factorization
 - 2 seconds for subsequent ADMM iterations
 - 6 seconds for lasso solve (~ 15 ADMM iterations)

Exchange problem

• typical problem formulation:

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$

subject to $\sum_{i=1}^{N} x_i = 0$

• dual of consensus

• one interpretation: N agents exchanging n items so as to minimize total cost